
Differential Privacy: A Step Towards Protecting Our Data

Ryan Sowa
McGill University, Montréal, Canada

ryan.sowa@mail.mcgill.ca

Abstract. From data stored by large-scale agencies to data stored for scientific
research to data stored in our cellphones, data is and will continue to be ubiqui-
tous in our everyday lives. The privacy and protection of our data is, therefore,
compulsory. One way to protect our data from breaches is by ensuring that every
computation on sensitive data satisfies differential privacy, a rigorous framework
for stating and enforcing privacy guarantees [1]. This phenomenon has given rise
to tools which aim to check whether or not a program is differentially private.
Many of the existing formal methods for differential privacy necessitate a a steep
learning curve on the part of the programmer and can be quite tedious. In this
paper, I will discuss and compare different tools that ensure differential privacy.
I will also present a simple imperative language for verifying differentially-private
programs which draws a balance between expressive power and usability.

1 Introduction

Over the years, several tools for achieving differential privacy have been introduced, each
with its advantages and disadvantages. I will first define the notion of differential privacy
and will go on to discuss various differential privacy tools analyzed by Barthe et al. [1],
namely the Fuzz Approach and the CertiPriv Approach. I will elaborate upon the re-
lated syntax and type assignment rules as well as offer concrete examples to further my
explanation. Finally, I will analyze LightDP, “a new imperative language for verifying so-
phisticated privacy-preserving algorithms [5].” The goal of LightDP is to “to minimize the
burden on the programmer while retaining most of the capabilities of the state-of-the-art.”
To complete a thorough analysis, I will analyze the language syntax and typing rules for
LightDP. Then, I will showcase the utility of LightDP by detailing a hands-on experiment
I conducted with the tool. I will discuss my results in detail.

2 Differential Privacy Tools

2.1 Differential Privacy

According to Dwork, McSherry, Nissim, and Smith (2006, cited by [5]), differential privacy
is “a set of restrictions on their probabilistic behavior that provably limit the ability of
attackers to infer individual-level sensitive information.” Dwork et. al define the notion

Differential Privacy: A Step Towards Protecting Our Data 2

τ, σ ::= R | !rσ ⊸ τ | σ ⊕ τ | M σ

e ::= x | r | f | λx :!rσ.e | e e | fix g.x.e | inji e | case e of x→ e or y → e
let M x = e in e | unit e

Γ ::= ∅ | Γ, x :!rσ

Figure 1: Fuzz Syntax Rules

of differential privacy more formally below:

Definition 2.1.1 (Differential privacy: A randomized program P : dB → R is (ϵ, δ)-
differentially private for ϵ, δ ≥ 0 if for every two databases, D,D′ ∈ dB, differing in one
row and for any subset S ⊆ R of the outputs, we have:

Pr(P (D) ∈ S) ≤ eϵ · Pr[P (D′) ∈ S] + δ

.

Here, ϵ and δ represent key information: ϵ represents the privacy cost (i.e., the cost
an individual’s data will be exposed) and δ represents the trade-off between privacy and
utility (it is typically 0).

2.2 The Fuzz Approach

One of the ways to ensure differential privacy is the Fuzz Approach [4]. The Fuzz Approach
aims to ensure that programs are ϵ-differentially private (however, not (ϵ, δ)-differentially
private) [3]. Fuzz is designed to use a type-checking procedure to ensure that well-typed
programs of a particular type are ϵ-differentially private. To better explain how the Fuzz
Approach works, we introduce the Fuzz syntax rules and typing rules [1]as given by Fig-
ures 1 and 2, respectively.

We also define the notion of c-sensitivity as follows:

Definition 2.2.1: Let P : A → B be a program and dA and dB be metrics on A and
B, respectively. Then, P is c-sensitive for c ∈ R>0 if, for all x, y ∈ A, we have

dB(P (x), P (y)) ≤ c · dA(x, y)

Finally, we state the main theorem for differential privacy in Fuzz :

Differential Privacy: A Step Towards Protecting Our Data 3

Γ ⊢ r : R
Const

f an r-sensitive fn in σ → τ

Γ ⊢ f : !rσ ⊸ τ
Prim

r ≥ 1

Γ, x :!rτ ⊢ x : τ
Var

Γ, x :!rτ ⊢ e : σ

Γ ⊢ λx :!rτ.e :!rτ ⊸ σ
⊸ I

Γ ⊢ e1 : !rτ ⊸ σ ∆ ⊢ e2 : τ

Γ + r ·∆ ⊢ e1 e2 : σ
⊸ E

Γ ⊢ e : τi
Γ ⊢ injie : τ1 ⊕ τ2

inji
∆ ⊢ e : σ ⊕ τ x :!rσ,Γ ⊢ el : µ y :!rτ,Γ ⊢ er : µ

Γ + r ·∆ ⊢ case e of x→ el or y → er : µ
Case

Γ ⊢ e : σ

∞ · Γ ⊢ unit e : M σ
unit

∆ ⊢ e : M σ x :!∞σ,Γ ⊢ e1 : M µ

Γ +∆ ⊢ let M x = e in e1 : M µ
let

Figure 2: Fuzz Typing Rules

Theorem 2.2.1: Let M R represent the monadic type of discrete probability distribu-
tions over the output type R, ⊸ represent the space of 1-sensitive functions from !ϵdB
to M R, and the type !ϵdB represent the type of databases whose metric is that of dB
multiplied by ϵ. If

⊢ e :!ϵdB ⊸ M R

in Fuzz, then e is ϵ-differentially private.

As a final note, Fuzz only provides useful analyses when program sensitivities are
statistically bounded - not when sensitivity depends on program inputs. This can be a
problem when the total privacy level of a program depends on the number of iterations
of a program. As a result of this shortcoming, tools like DFuzz, which allow dependent
typing, have been introduced.

2.3 Example of Fuzz

To demonstrate how Fuzz works, we refer to the example given by Barthe et al [1]. Suppose
that we want to determine how many patients at a hospital are over the age of 40. We
are given the following functions:

over 40 : Determines if an individual is over the age of 40

size: Outputs how many rows a database has

filter : Outputs how many rows satisfy a predicate

.

Differential Privacy: A Step Towards Protecting Our Data 4

With these functions, we can formulate the following differentially-private program to
address the query:

λd :!ϵdB.add noise(size(filter over 40 d)) :!ϵdB ⊸MR

.

2.4 The CertiPriv Approach

Another way to ensure differential privacy is the CertiPriv Approach [2]. The CertiPriv
Approach aims to use relational Hoare logic to verify differential privacy [1].

Traditional Hoare Logic can be used to reason about a program using logical predicates
as pre-conditions and post-conditions. In particular, if ϕ is a pre-condition and ψ is a post-
condition, we can reason about a program c by using a judgment of the following form:

⊢ c : ϕ =⇒ ψ

. This judgment expresses that given a memory m satisfying ϕ, c will produce a memory
m′ satisfying ψ.

This logic can be extended to two commands, c1 and c2:

⊢ c1 ∼ c2 : Ψ =⇒ Φ

. This judgment expresses that given two memories m1 and m2 satisfying the precondition
Ψ, the commands c1 and c2 will produce a memorym′

1 andm
′
2 satisfying the postcondition

Φ.
The relational Hoare logic proposed by Barthe et al. [1] for reasoning about differ-

ential privacy was called apRHL. In particular, apRHL expresses judgments on pWhile

commands c defined by the grammar:

c ::= skip | c; c | x← e | x $←− Lapϵ(e) | x
$←− Expϵ(e, e) | if e then c else c

while e do c

. The main theorem for differential privacy in apRHL is then given by:

Theorem 2.4.1: Let c be a pWhile command and c◁ and c▷ be two copies of c resulting
from renaming of variables in c. If

⊢ c◁ ∼⟨ϵ,δ⟩ c▷ : adjacent =⇒=

then c is (ϵ, δ)-differentially private.

Differential Privacy: A Step Towards Protecting Our Data 5

Figure 3: Transformed Partial Sums Program

2.5 Example of CertiPriv :

To demonstrate how CertiPriv works, we refer to the example given by Barthe et al. [1].
Given a list of length n, we seek to create a differentially private algorithm for computing
partial sums over lists of integer values taken from a bounded interval. The CertiPriv
Approach aims to achieve a private approximation of computing these partial sums. The
two approaches to achieving this goal are input perturbation (computing all partial sums
over a “noised” list) and output perturbation (adding Laplace noise to each partial sum).
However, there are upsides and downsides to both of these approaches. Namely, input
perturbation offers poor privacy and good accuracy, while output perturbation offers poor
accuracy but good privacy. CertiPriv combines both of these approaches to achieve a
reasonable trade-off between privacy and accuracy. The transformed program is shown in
Figure 3.

3 LightDP

3.1 Abstract

Due to the necessity to secure our data and prevent breaches, many algorithms used to
ensure differential privacy such as the Fuzz Approach and the CertiPriv Approach were
invented. However, not all of these algorithms were correct (i.e., they did not accurately
ensure differential privacy), and a formal measure to prove whether an algorithm was differ-
entially private was required. Many of these differential privacy-checking algorithms could
verify sophisticated algorithms; however, they required extensive knowledge on the part
of the programmer. LightDP, a simple imperative language, was invented to address this
knowledge gap [5]. The goal of LightDP was to help develop provably privacy-preserving
algorithms while also striking a better balance between expressive power and usability.

Differential Privacy: A Step Towards Protecting Our Data 6

Reals r ∈ R
Booleans b ∈ {true, false}
Vars x ∈ V ar
Rand Vars n ∈ H
Linear Ops ⊕ ::= + | −
Other Ops ⊗ ::= × | /
Comparators ⊙ ::=<|>|=|≤|≥
Rand Exps g ::= Lap r
Expression e ::= r | b | x | η | e1 ⊕ e2 | e1 ⊗ e2 | e1⊙2 |

¬e | e1 :: e2 | e1[e2] | e1?e2 : e3
Commands c ::= skip | x := e | η := g | c1; c2 | return e |

if e then c1 else c2 | while e do c
Distances d ::= r | x | η | d1 ⊕ d2 | d1 ⊗ d2 | d1 ⊙ d2?d3 : d4
Types τ ::= numd | num∗ | bool | list τ | τ1 → τ2

Figure 4: Syntax for LightDP

3.2 Typing Rules and Syntax

The syntax for LightDP is given in Figure 4. Based on this syntax, we can conclude
that LightDP behaves like a standard imperative language with the exception of its use
of random expressions, list operations, types with distances, and star types.

A subset of the typing rules for expressions for LightDP is shown in Figure 5. LightDP ’s
dependent type system aims to capture exact differences of a variable’s values in two ex-
ecutions under adjacent databases. This typing system verifies that these differences are
bounded as an invariant during the execution using type annotations. In verifying that
this invariant is always maintained, the typing system ensures that the two related execu-
tions will always produce the same output. In addition, the type annotations reduce the
annotation burden generally required by the programmer when verifying a program for
differential privacy, thus improving usability.

3.3 Differential Privacy in LightDP

If type-checking succeeds, LightDP transforms the program it wants to verify into a non-
probabilistic program where privacy cost is explicitly calculated by a new variable, vϵ.
Then, the fundamental soundness theorem for LightDP informally states if vϵ is always
bounded by some constant ϵ′ in the transformed program, then the original program is
ϵ′-differentially private.

Differential Privacy: A Step Towards Protecting Our Data 7

Γ ⊢ r : num0
T-NUM

Γ ⊢ b : bool
T-BOOLEAN

Γ, x : βd ⊢ x : βd

T-VAR
Γ, x : β∗ ⊢ x : Bx̂

T-VARSTAR

Γ ⊢ e1 : numd1 Γ ⊢ e2 : numd2
Γ ⊢ e1 ⊕ e2 : numd1⊕d2

T-OPLUS

Γ ⊢ e1 : num0 Γ ⊢ e2 : num0
Γ ⊢ e1 ⊗ e2 : num0

T-OTIMES

Figure 5: Typing Rules for LightDP. For simplicity, we just show a subset of the
typing rules for expressions.

3.4 Example of LightDP

We now demonstrate how LightDP works using the following example. Given a list of
queries, q representing trials counting the amount of individuals with an infection, we seek
to calculate whether some query, q[i], exceeds a threshold, T . The Sparse Vector method
(the program on the top left in Figure 6) aims for a differentially private program to
accomplish this. To verify if this program is differentially private, the program on the right
in Figure 6 is constructed. In this transformed program, privacy cost is explicitly calculated
via a new variable, vϵ and probabilistic instructions are replaced by a new nondeterministic
instruction, havoc η. We can now conclude that if vϵ is always bounded by some ϵ′ in the
transformed program, then the original program is ϵ′-differentially private.

4 Methods

My goal was to verify a differentially-private program using LightDP. Specifically, I aimed
to replicate the transformation of the Sparse Vector program discussed above. In order
to accomplish this, I made use of a repository created by Yuxin Wang which presented
a tool for transforming LightDP programs into Python programs along with differential-
privacy proofs. This repository can be found at https://github.com/yxwangcs/lightdp. I
ran this tool on my computer, hoping to be able to produce the same results obtained by
Zhang and Kifer [5] in transforming the Sparse Vector program using LightDP.

5 Results

As shown in Figure 6, the results obtained by running the tool on my computer were very
similar to those produced by Zhang and Kifer [5]. More specifically, the results revealed
several differences between the original and transformed Python programs:

• A havoc function was defined and used in SparseVector

https://github.com/yxwangcs/lightdp

Differential Privacy: A Step Towards Protecting Our Data 8

Figure 6: Transforming the Sparse Vector program using LightDP. The top dia-
gram shows the abstract transformation of a program by LightDP as presented in
Zhang and Kifer [5]. The bottom diagram shows the transformation after running
Yuxin Wang’s tool for transforming LightDP programs into Python programs.

• A new variable V epsilon was defined which kept track of privacy costs

• V epsilon is returned by SparseVector

. Therefore, based on how LightDP works, we can conclude that the original program
is ϵ′-differentially private if V epsilon is always bounded by some ϵ′ in the transformed
program.

In terms of usability, this tool proved to be very simple to run and produce clear
results. This would make it reasonably easy for someone with very little knowledge of

Differential Privacy: A Step Towards Protecting Our Data 9

differential privacy proofs to verify a differentially-private program.

6 Conclusion

In conclusion, the security of our data is fundamental as everyone, from individuals to
large-scale corporations, uses sensitive data. Differential privacy is crucial to the protection
of this data, and there exists several approaches to ensuring differential privacy. I mainly
analyzed two approaches: the Fuzz Approach and the CertiPriv Approach. The Fuzz
Approach uses type-checking procedures to ensure that well-typed programs of a particular
type are ϵ-differentially private, while the CertiPriv Approach uses Hoare Logic to reason
about programs. Finally, LightDP is a simple, effective tool to develop provably privacy-
preserving algorithms. I conducted a hands-on experiment with LightDP by using a tool
presented by Yuxin Wang for transforming LightDP programs into Python programs along
with differential-privacy proofs. I ran this tool on the Sparse Vector program and was
able to obtain similar results to those obtained by Zhang and Kifer. After conducting
this experiment, I came to the conclusion that it would be relatively straightforward for
someone with little knowledge of differential privacy proofs to verify a differentially-private
program with LightDP.

Differential Privacy: A Step Towards Protecting Our Data 10

References

[1] Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin Pierce. Programming lan-
guage techniques for differential privacy. ACM SIGLOG News, 3(1):34–53, feb 2016.

[2] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilis-
tic relational reasoning for differential privacy. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’12,
page 97–110, New York, NY, USA, 2012. Association for Computing Machinery.

[3] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory
of Cryptography, pages 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[4] Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A
calculus for differential privacy. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’10, page 157–168, New York,
NY, USA, 2010. Association for Computing Machinery.

[5] Danfeng Zhang and Daniel Kifer. Lightdp: Towards automating differential privacy
proofs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, page 888–901, New York, NY, USA, 2017. Associ-
ation for Computing Machinery.

	Introduction
	Differential Privacy Tools
	Differential Privacy
	The Fuzz Approach
	Example of Fuzz
	The CertiPriv Approach
	Example of CertiPriv:

	LightDP
	Abstract
	Typing Rules and Syntax
	Differential Privacy in LightDP
	Example of LightDP

	Methods
	Results
	Conclusion

