
Prometheus Vision Facial Recognition

Ryan Sowa

1 Abstract

Recently, facial recognition using artificial intelligence has become an in-
creasingly growing field, especially as it relates to government and personal
issues. In this paper, I will be analyzing previous works in computer vision
centered on facial recognition. I will be specifically looking to address the fol-
lowing key questions:

1. What exact mechanisms does computer vision use to recognize a person?

2. How does computer vision specifically identify the unique features in an
individual which distinguishes them from other individuals?

3. How many photos must the algorithm analyze to correctly identify an
individual?

4. Do the same facial recognition algorithms work for other species such as
dogs?

After reviewing several widely-used facial recognition algorithms, I discovered
the key mechanisms behind facial recognition. After coding my own facial recog-
nition program in Python, I was able to determine that it is possible to achieve
high accuracy in facial recognition provided only a single image of a given face
in the training set.

2 Introduction

To get a better understanding of how facial recognition works, I first star-
ted researching Convolutional Neural Networks (CNNs). Then, I researched
the key mechanisms behind eigenface using Principal Component Analysis and
Linear Discriminant Analysis. Finally, I researched whether facial recognition
algorithms could be applied to other species (specifically dogs) as well as hu-
mans. As facial recognition will become ubiquitous in the future, it is important
that we build efficient facial recognition programs for both humans as well as
other species. I centered my research on Low-Shot Learning, which could be
used to revolutionize facial recognition with its extreme efficiency. I proceeded
to code a facial recognition program in Python and test this program with
several sample images.

1

3 Materials and Methods

My deliverables schedule written before my research can be outlined as fol-
lows:

May: Review and document previous research
June: Finish research, start coding own facial recognition software
July: Finish facial recognition software, document in report

My facial recognition software will take in several images as input. After these
images have been initialized and processed into the system, I will then test my
program on a new set of images to see if the program recognizes the faces in the
pictures previously entered as input. I will document each step of this process
in detail.

There will be 3 functions in my facial recognition program: initialize(), pro-
cess() and detectFaces(). First, initialize() will be called. Initialize() will initial-
ize the images that are passed as an argument to this function. Each of these
images should be assigned the name of the individual in the picture. Then,
process() will process (convert into a form the program can recognize) the test
images. Finally, detectFaces() will use this information to identify the indi-
viduals in a test image passed as an argument. It will output an array which
contains the names of the individuals in that image. Please see the below UML
sequence diagram describing this:

4 Results

Convolution Neural Networks (CNNs) are widely used in Computer Vision,
especially in facial recognition. There are typically many layers in a Convolu-
tional Neural Network, but we will mainly focus on 3 layers: the convolutional
(or input) layer, the pooling (or hidden) layer, and the output layer (Ghosh,

2

Sufian, Sultana, Chakrabarti, & De, 2020). See the image below illustrating
this:

(Jordan)

The convolutional layer is “a set of convolutional kernels (also called filters),
which get convolved with the input image (N-dimensional metrics) to generate
an output feature map” (Ghosh et al., 2020, p. 6). Before starting the convo-
lutional process, we transform the image into a matrix in which letters replace
the intensity in color at every pixel. Then, we pick a kernel and a stride. The
kernel we use will be a n×n matrix which we will use to take a dot product with
the image matrix at each stride. After we are finished convulving the image,
we will have extracted some key features from the image (such as vertical or
horizontal edges) which can be outputted to the next layer of the CNN. Here is

an example of convulving the image matrix

[
1 2 4 3
0 3 8 9

]
with kernel

[
1 2
0 3

]
and stride = 1. [

1 2
0 3

]
·
[
1 2
0 3

]
= 10 (first stride)

[
1 2
0 3

]
·
[
2 4
3 8

]
= 32 (second stride)

[
1 2
0 3

]
·
[
4 3
8 9

]
= 47 (third stride)

Therefore, we end up with the convulved matrix below:[
10 32 47

]
.

After convulving our image, we would often like to reduce our convulved
matrix to a more simplified version which contains most of the same character-
istics. We can accomplish this using a technique called “pooling.” There are
many types of pooling techniques, but we will examine one of the most common
types: max pooling. Max pooling involves taking the maximum value of all the

3

entrees in the matrix at each stride. For example, using max pooling on the

matrix

[
1 2 4 3
0 3 8 9

]
and taking stride = 1, we get:

max

[
1 2
0 3

]
= 3

max

[
2 4
3 8

]
= 8

max

[
4 3
8 9

]
= 9

Therefore, we get the final max pooling matrix below:[
3 8 8

]
After convulving the image matrix and pooling, we end up at the last layer

of the CNN: the Fully Connected (FC), or output layer. This layer generates
the final output of the CNN which classifies the image. From there, we can use
loss functions to calculate error in the classification.

Another common tool used for facial recognition is known as eigenface. The
eigenface method is compromised of three key aspects: Principal Component
Analysis, the eigenvector, and the face space (Lee-Morrison, 2019).

Principal Component Analysis (PCA) is used to determine the eigenvectors
that “display the degree of variability or deviation between facial characterist-
ics and an average” while reducing the dimensions of the images (Lee-Morrison,
2019, p.72). PCA works by projecting the data onto a subspace of orthogonal
axes such that the new dimension ≤ old dimension. From there, the images in
the dataset are represented as linear combinations of these eigenvectors. The
greater the variance in an eigenvector, the more blurred a given image (or “ei-
genface”) will appear. As a result, since most of our images will show large
variations in eigenvectors, most of our transformed images will appear blurred.

Below is an example of a set of eigenfaces:

4

(Acar)

As mentioned above, eigenvectors are the result of performing PCA on a set
of images. Eigenvectors are a measure of differences and similarities between a
given face and a set of faces. Because “each eigenvector represents the greatest
degree by which the facial images may vary,” it is then possible to create a way
of classifying faces based on their deviation from these eigenvectors.

After PCA is performed, all the eigenvectors from the sample images are
projected onto a “face space”. The face space is defined as “a virtual subspace
that is defined and framed by the measured distances between a collection of
eigenvectors.” (Lee-Morrison, 2019, p.73) When a new image is to be classified,
the eigenvectors of the face space are compared with the eigenvectors of the
sample image, and the image is then classified into the proper category.

An alternative often used for PCA in facial recognition is called Linear Dis-
criminant Analysis (LDA). PCA and LDA both focus on reducing dimensional-
ity, however instead of trying to find component axes that maximize variance,
LDA focuses rather on maximizing the separation between two classes (Raschka,
2014).

Below is an illustration of this difference:

5

(Raschka)

In order to maximize class separation, the distance between means must be
maximized and the scatter (or variation) within each classX must be minimized.
In other words, if µ1 is the mean for the first class and µ2 is the mean for the
second, then

|µ1 − µ2|2

must be maximized. Likewise, if s1 is the scatter for the first class and s2 is the
scatter for the second class, then

s21 + s22

must be minimized.

The final facial recognition tool I will be discussing and my main focus
is called Low-Shot (or Less Than One-Shot) Learning. The facial recognition
algorithms described above all require several images of a given face within a
training set in order for that face to be recognized later. Low-Shot Learning, on
the other hand, could be used to classify faces after analyzing just a single image.
As an example of its learning capabilities, given a horse and a rhinoceros in the
training set, Low-Shot Learning is able to recognize a unicorn as something
in-between the two (Hao, 2020).

The goal of Low-Shot is to recognize N new classes given M < N new ex-
amples. This classification is done with the help of “soft links”. A soft link
(or label) is a specific feature in an image which holds membership in several
different classes. A good example of the efficacy of soft links for handwritten
digits was documented in this paper by MIT researchers. It was proved that the
MNIST data set, which originally contained 60,000 images, could be reduced
down to just 10 images.

With the 10 “distilled” images below, an AI model could recognize handwritten
digits with 94% accuracy.

6

https://arxiv.org/pdf/1811.10959.pdf

(Hao)

This was well explained by Ilia Sucholutsky, a PhD student at Waterloo and
lead author of Waterloo’s Low-Shot research paper. He explained, rather than
recognize a number as that number, it is better to use soft links to capture
shared features between numbers: “instead of telling the machine, ‘This image
is the digit 3,’ we say, ‘This image is 60% the digit 3, 30% the digit 8, and 10%
the digit 0.’” Using soft links, in the optimal case, we can reduce the minimal
number of training images from O(N2) to O(1) in order to separate N classes
(Sucholutsky & Schonlau, 2020).

Low-Shot Learning uses soft links to classify objects with a machine-learning
algorithm called “k-nearest neighbors”, or “kNN.” Given two classes, kNN finds
characteristics (say weight and height) which differ between the two classes and
plots them on a set of axes. Below, see an example of such a plot:

(Hao)

After selecting axes and plotting the data, a boundary line is drawn on the
2D chart between the two classes. The algorithm can then decide how to classify
new objects based on where they lie in relation to this boundary line.

Of course, there are also some drawbacks, particularly human error, to Low-
Shot Learning. As it is necessary for people to label the soft links in the data,
the algorithm is subject to unconscious mistakes. Therefore, in order for this
algorithm to operate successfully, it is necessary that great precision measures
are taken.

Low-Shot Learning could easily be applied to facial recognition. By identify-
ing the soft links in images classifying faces using the kNN algorithm, it becomes

7

easier to identify a person given only one or a few images of a given individual
which may be subject to expression, hairstyle, lighting, etc. (Brownlee, 2019).
Because of the ability of Low-Shot to track similar features in images, it may
also be possible to use Low-Shot to classify relationships between relatives. For
example, Low-Shot may have the ability to, given the photos of the mother and
the father, classify whether a given image is the child.

Facial recognition for dogs could be very useful in identifying wild dogs and
retrieving lost animals. Using a combination of CNNs, activation functions,
pooling, and normalization, it was proved that facial recognition for dogs can
also be achieved. Below are the results of an experiment researchers Thierry
Pinheiro Moreira, Mauricio Lisboa, Perez, Rafael de Oliveira Werneck, and
Eduardo Valle performed to successfully identify a dog, Oliver:

(Moreina, Lisboa, Werneck, & Valle, 2016).

After doing this research, I starting coding my own facial recognition pro-
gram with a key question in mind: are many pictures of an individual required
in a data set for relatively accurate recognition of that individual? Seeking
to utilise something similar to Low-Shot Learning, I decided to write my fa-
cial recognition program in Python using the face recognition module. The
face recognition module uses an algorithm very similar to eigenface by first
mapping the faces to faces to vector space and then checking for distinguishing
features of these faces. More precisely, this algorithm “maps an image of a hu-
man face to a 128 dimensional vector space where images of the same person
are near to each other and images from different people are far apart (‘how
to use dlib’s face recognition tool’).” Unlike the eigenface algorithm, however,
this algorithm only requires one of each face rather than several in the training
set. In this way, this algorithm acts like Low-Shot Learning. As a serious chess
player and someone who is passionate about following top chess tournaments,
I thought it would be interesting to try my facial recognition program on top
chess players. I initialized some of the most famous modern-day chess players
in my training set and initialized my identification set with (mostly) group pic-
tures of these players.

My facial recognition algorithm did the following: 1. Initialize and process
the training images, 2. Count the number of faces in each training image 3.

8

Initialize and process test images 4. Compare the faces in the training and test
set 5. Draw boxes around recognized faces (unrecognized faces display “Not
Recognized”).

My program contained 4 Python modules: process, recognition tools, draw box,
and test. Process provided the ability to process faces and names of the indi-
viduals in the training set, recognition tools provided the ability to count the
number of faces for each picture in a given directory and compare two images
which have already been processed, and draw box provided functionality for
initializing known faces and known names as well as drawing a box and a name
around the faces of individuals who are recognized from the training set. Please
see the below box diagram illustrating how these classes operate together:

I trained my algorithm with 24 images and then, I tested my algorithm with
11 images.

Below is an example of successfully portraying 10 faces recognized in a group

9

test image from the 2017 Paris Grand Chess Tour after initializing the training
set:

Although my algorithm was not 100% accurate in identifying the faces in
the training set, I achieved accuracy about 98% of the time. I believe to achieve
accuracy closer to 99%, an algorithm closer to One-Shot Learning must be used.

5 Discussion

In conclusion, in analyzing Convolutional Neural Networks, eigenface, and
Low-Shot learning, I discovered the exact mechanisms each of these algorithms
used to recognize a person and distinguish them from other individuals. Al-
though most facial recognition algorithms required many images of an individual
in the training set, Low-Shot Learning could correctly identify individuals after
only analyzing a single image in the training set. I showed that recognition
after analysis of a single image is possible using the face recognition module in

10

Python. After initializing a single image of each individual, I was able to achieve
about 98% accuracy in recognizing those individuals. Lastly, I discovered that
facial recognition is not only possible for humans, but also possible for other
species such as dogs.

11

6 Literature Cited

Ghosh, Anirudha, et al. “Fundamental Concepts of Convolutional Neural Net-

work.” Recent Trends and Advances in Artificial Intelligence and Internet

of Things, edited by Balas, Valentina E., et al., Springer, 2020, pp. 519-567.

Jordan, Jeremy. “Convolutional Neural Networks.” Jeremy Jordan, 26 July

2017, https://www.jeremyjordan.me/convolutional-neural-networks/.

Lee-Morrison, Lila. “Portraits of Automated Facial Recognition”, Bielefeld:

transcript Verlag, 2019. https://doi.org/10.14361/9783839448465.

Acar, Nev. “Figure #4.” towards data science, 21 August 2018, https://towardsdatascience.com/eigenfaces-

recovering-humans-from-ghosts-17606c328184.

Raschka, Sebastian. “PCA vs. LDA.” sebastianraschka, 3 August 2014, ht-

tps://sebastianraschka.com/Articles/2014 python lda.html.

Raschka, Sebastian. “Linear Discriminant Analysis”, sebastianraschka, Sebastian

Raschka, 3 August 2014, https://sebastianraschka.com/Articles/2014 python lda.html.

Hao, Karen. “A radical new technique lets AI learn with practically no data.”

The New York Times, 22 May 2007, https://www.technologyreview.com/2020/10/16/1010566/ai-

machine-learning-with-tiny-data/. Accessed 8 July 2020.

Hao, Karen. “The 10 images ”distilled” from MNIST that can train an AI model

to achieve 94% recognition accuracy on handwritten digits.” MIT Techno-

logy Review, 16 October 2020, https://www.technologyreview.com/2020/10/16/1010566/ai-

12

https://www.jeremyjordan.me/convolutional-neural-networks/
https://doi.org/10.14361/9783839448465
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
https://sebastianraschka.com/Articles/2014_python_lda.html
https://sebastianraschka.com/Articles/2014_python_lda.html
https://sebastianraschka.com/Articles/2014_python_lda.html
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/

machine-learning-with-tiny-data/.

Hao, Karen. “Plotting apples (green and red dots) and oranges (orange dots) by

weight and color.” MIT Technology Review, 16 October 2020, https://www.technologyreview.com/2020/10/16/1010566/ai-

machine-learning-with-tiny-data/.

Sucholutsky, I., and M. Schonlau. “‘Less Than One’-Shot Learning: Learning

N Classes From M < N Samples”. Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 35, no. 11, May 2021, pp. 9739-46, ht-

tps://ojs.aaai.org/index.php/AAAI/article/view/17171.

Brownlee, Jason., “One-Shot Learning for Face Recognition ”, Machine Learn-

ing Mastery, Deep Learning for Computer Vision, 11 June 2019, https://machinelearningmastery.com/one-

shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face

-recognition/.

Moreira, T. et al. “Where is my puppy? Retrieving lost dogs by facial features.”

Multimedia Tools and Applications 76 (2016): 15325-15340.

Moreira, T. et al. Fig.7. 2017. Where is my puppy? Retrieving lost dogs by

facial features, Moreina, Verlag, Springer. 2017.

General Information on the New York Mets. dlib.net, dlib.net, http://dlib.net/face recognition.py.html.

“Paris GCT.” Paris Grand Chess Tour, Paris Grand Chess Tour, 2017, https://grandchesstour.org/2017-

grand-chess-tour/paris.

13

https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://www.technologyreview.com/2020/10/16/1010566/ai-machine-learning-with-tiny-data/
https://ojs.aaai.org/index.php/AAAI/article/view/17171
https://ojs.aaai.org/index.php/AAAI/article/view/17171
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
http://dlib.net/face_recognition.py.html
https://grandchesstour.org/2017-grand-chess-tour/paris
https://grandchesstour.org/2017-grand-chess-tour/paris

	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion
	Literature Cited

